1.6 — The Standard Trade Model ECON 324 • International Trade • Spring 2023

Ryan Safner

Associate Professor of Economics

✓ safner\@hood.edu

• ryansafner/tradeS23

StradeS23.classes.ryansafner.com

Outline

From Ricardian to Neoclassical Model

PPF: Increasing Costs

Indifference Curves

<u>Autarky Optimum</u>

<u>Global Market for x</u>

The Complete Picture

From Ricardian to Neoclassical Model

The Standard Trade Model

- The standard (or neoclassical) trade model is a more general model
 - Ricardian one-factor model: *special case*
 - $\circ~$ Same with H-O (next) model
- We will extend the concepts we learned from the Ricardian model
 - more traditional neoclassical assumptions
- A straightfoward neoclassical story about relative prices changing

What We're Adding to Ricardo

- Money prices (in dollars), p_x , p_y
- Other factors of production with diminishing returns
 - Increasing opportunity costs of production
- Determination of global equilibrium relative prices via supply & demand
- Effects of the terms of trade changing
- Effects of countries' economies development & trade policy

Tools for the Standard Model

- We will do everything with graphs rather than equations
 - I expect you to understand and be able to interpret, if not be able to draw own graphs
- I will break today up into separate tools we will then combine
 - 1. PPF with increasing costs
 - 2. Indifference curves
 - 3. Comparative advantage in autarky
 - 4. Global market relative demand and relative supply
 - 5. International trade equilibrium
 - 6. Terms of trade changes (next class)

Factors of Production I

$$q = Af(t,l,k)$$

• Economists typically classify inputs, known as **factors of production (FOP)**:

Factor	Owned By	Earns
Land (t)	Landowners	Rent
Labor (l)	Laborers	Wages
Capital (k)	Capitalists	Interest

- A: "total factor productivity" (ideas/knowledge/institutions)
- and Entrepreneurs/Owners who earn Profit

Factors of Production II

• We often assume just two inputs: labor l and capital k

Factor	Owned By	Earns
Labor (l)	Laborers	Wages
Capital (k)	Capitalists	Interest

Marginal Product of Labor

 Marginal product of labor (MP_l): additional output produced by adding one more unit of labor (holding k constant)

$$MP_l = rac{\Delta q}{\Delta l}$$

- MP_l is slope of TP at each value of l!
- Note: via calculus: $\frac{\partial q}{\partial l}$

Marginal Product of Capital

• Marginal product of capital (MP_k) :

additional output produced by adding one more unit of capital (holding l constant)

$$MP_k = rac{\Delta q}{\Delta k}$$

- MP_k is slope of TP at each value of k!
- Note: via calculus: $\frac{\partial q}{\partial k}$

Diminishing Returns

- Law of Diminishing Returns: adding more of one factor of production holding all others constant will result in successively lower increases in output
- In order to increase output, need to increase use of *all* factors!

Diminishing Returns

- Law of Diminishing Returns: adding more of one factor of production holding all others constant will result in successively lower increases in output
- In order to increase output, need to increase use of *all* factors!

Competitive Markets and Factor Switching

- We still assume output markets and factor markets (for land, labor, capital) are perfectly competitive
- Firms hire resources up to the point where marginal cost of one more unit of *l* or *k* is equal to its marginal benefit in production ("marginal revenue product")
- Implies that in equilibrium, each factor of production is paid its marginal revenue product:

 $p_l = p_y * MP_l$ $p_k = p_y * MP_k$

- $\circ~$ Where p_l and p_k are prices of labor and capital, and p_y is the price of some output
- If you want to remember why, see my slides on <u>Factor Markets</u>
- Multiple combinations of l and k can produce equivalent output y
- Takeaway: producers will substitute between labor and capital depending on relative prices and technology

• Marginal rate of transformation (MRT)

increases as we produce more of a good

- Again: "slope", "relative price of x",
 "opportunity cost of x"
- $\circ~$ Amount of y given up to get 1 more x ~

$$-rac{p_x}{p_y}$$

• Marginal rate of transformation (MRT)

increases as we produce more of a good

Again: "slope", "relative price of x",
"opportunity cost of x"

 $\circ~$ Amount of y given up to get 1 more x ~

$$-rac{p_x}{p_y}$$

- 5. 3 \geq 0 -3 Х
- Marginal rate of transformation (MRT)

increases as we produce more of a good

- Again: "slope", "relative price of x",
 "opportunity cost of x"
- $\circ~$ Amount of y given up to get 1 more x

 $-rac{p_x}{p_y}$

- $A \to B$ raises opportunity cost of producing x

- 5 3 \geq 0 -

Х

• Marginal rate of transformation (MRT)

increases as we produce more of a good

- Again: "slope", "relative price of x",
 "opportunity cost of x"
- $\circ~$ Amount of y given up to get 1 more x

 $-rac{p_x}{p_y}$

- A
 ightarrow B raises opportunity cost of producing x
- $A \leftarrow B$ raises opportunity cost of producing y

What Causes a Curved PPF?

- Diminishing returns to each factor of production $(\downarrow MP_L, MP_K, MP_T)$ (holding others constant)
- Substitution of factors of production and combinations based on relative factor prices
- Moving Left/Right \implies changes in relative prices between x and y

$$\left(rac{p_x}{p_y}
ight)^1
ightarrow \left(rac{p_x}{p_y}
ight)^2$$

• We dive deeper into these issues in the next model

- A country begins in **autarky** with no international trade
- Where on its PPF should it produce? It should find an optimum combination of (x,y)
- Every point on its PPF is determined by relative prices $\frac{p_x}{p_y}$
 - As a curve, each point has a different slope (derivative)

- Assume: country will produce to maximize the market value of its production
- 1. Choose: < a production & consumption bundle >
- 2. In order to maximize: < market value >
- 3. Subject to: < technology and market prices >

• For some *given* autarky prices, p_x and p_y :

 $p_x x + p_y y = V$

- Describes the equation of "isovalue lines"
 - Each line: set of combinations of x and
 y worth the same total market value
 - \circ Higher lines \implies higher market value

• For some *given* autarky prices, p_x and p_y :

 $p_x x + p_y y = V$

- Describes the equation of "isovalue lines"
 - $\circ~$ Each line: set of combinations of x and y worth the same total market value
 - \circ Higher lines \implies higher market value
- Solved for *y* to graph:

$$y=rac{V}{p_y}-rac{p_x}{p_y}x$$

$$y=rac{V}{p_y}-rac{p_x}{p_y}x$$

• Again, **slope** is the **relative price of x**

$$y=rac{V}{p_y}-rac{p_x}{p_y}x$$

- Again, **slope** is the **relative price of x**
- Given p_x and p_y , pick the point on PPF **tangent** to **highest** line
- **Point A**: maximized market value of output under current constraints

Isovalue Lines depend on Relative Prices in Autarky

$$y=rac{V}{p_y}-rac{p_x}{p_y}x$$

• If relative prices were to **change** (in autarky)

$$\left(rac{p_x}{p_y}
ight)^1
ightarrow \left(rac{p_x}{p_y}
ight)^2$$

there would be a new set of isovalue lines with a **different slope**.

Isovalue Lines depend on Relative Prices in Autarky

$$y=rac{V}{p_y}-rac{p_x}{p_y}x$$

• If relative prices were to change (in autarky)

$$\left(rac{p_x}{p_y}
ight)^1
ightarrow \left(rac{p_x}{p_y}
ight)^2$$

there would be a new set of isovalue lines with a **different slope**.

• Optimum in autarky would be different point tangent to highest isovalue line of new slope: **Point B**

Consider a bundle of goods x and y: A =

 (2,5)

- Consider a bundle of goods x and y: A = (2,5)
- Consider another bundle: B = (5,2)
 - $\circ~$ More x but less y

- Consider a bundle of goods x and y: A = (2,5)
- Consider another bundle: B = (5,2)
 - More x but less y
- Consider a third bundle: C = (10,1)
 - $\circ~$ Even more x but even less y

- Consider a bundle of goods x and y: A =

 (2,5)
- Consider another bundle: B = (5,2)
 - $\circ~$ More x but less y
- Consider a third bundle: C = (10,1)
 - $\circ~$ Even more x but even less y
- Suppose you are indifferent between $A\sim B\sim C \text{: these bundles are on the same indifference curve}$

• Country is **indifferent** between all bundles on the same indifference curve

- Country is **indifferent** between all bundles on the same indifference curve
- Bundles *above* curve are **preferred over** bundles on curve
 - $\circ \ D \succ A \sim B \sim C$
 - On a **higher curve**

- Country is **indifferent** between all bundles on the same indifference curve
- Bundles *above* curve are **preferred over** bundles on curve
 - $\circ \ D \succ A \sim B \sim C$
 - On a **higher curve**
- Bundles **below** curve are **less preferred** than bundles on curve
 - $\circ ~ E \prec A \sim B \sim C$
 - On a **lower curve**

Marginal Rate of Substitution

• To aquire 1 more unit of x, how many units of y are you willing to give up to remain indifferent?

Marginal Rate of Substitution I

- To aquire 1 more unit of x, how many units of y are you willing to give up to remain indifferent?
- Marginal Rate of Substitution (MRS): rate at which you trade off one good for the other and remain *indifferent*
- Again: **opportunity cost**: # of units of y you need to give up to acquire 1 more x

MRS vs. Other Slopes

- Isovalue lines (slope) & MRT (PPF slope) measured the **production** tradeoff
 between x and y based on market prices
- **MRS** measures **consumption** tradeoff between *x* vs. *y* based on preferences

Marginal Rate of Substitution

• MRS is the slope of the indifference curve

$$MRS_{x,y} = -rac{\Delta y}{\Delta x} = rac{rise}{run}$$

- Amount of \boldsymbol{y} given up for 1 more \boldsymbol{x}
- Note: slope (MRS) changes along the curve!

Autarky Optimum

Home's Autarky Optimum

• Home produces and consumes at highest indifference curve tangent to its PPF

Home's Autarky Optimum

- Home produces and consumes at highest indifference curve tangent to its PPF
- At Home's autarky optimum:

• This is Home's relative price in autarky: the relative price (of x) where nation is maximizing its welfare in autarky

Foreign's Autarky Equilibrium

• Foreign (with different PPF) also produces and consumes at highest indifference curve tangent to its PPF

Foreign's Autarky Equilibrium

- Foreign (with different PPF) also produces and consumes at highest indifference curve tangent to its PPF
- At Foreign's autarky optimum:

• This is Foreign's relative price in autarky: the relative price (of x) where nation is maximizing its welfare in autarky

Relative Prices in Autarky Equilibrium

• Home and Foreign have different relative prices in autarky

Relative Prices in Autarky Equilibrium

- Home and Foreign have different relative prices in autarky
- Relative price of x (slope of PPF) is lower (flatter) in Home than Foreign

$$\left(rac{p_x}{p_y}
ight) < \left(rac{p_x}{p_y}
ight)'$$

Comparative Advantage

- Home has a comparative advantage in x; will export x
- Foreign has a comparative advantage in y; will export y

Recall from Ricardian Model: Price Adjustments

- Home exports $\mathsf{x} \implies \mathit{less}\,\mathsf{x}$ sold in Home $\implies \uparrow p_x$ in Home
- As x arrives in Foreign \implies more x sold in Foreign \implies \downarrow p_x in Foreign
- Foreign exports y \implies less y sold in Foreign \implies \uparrow p_y in Foreign
- As y arrives in Home \implies *more* y sold in Home \implies \downarrow p_y in Home

Global Market for x

Global Market for x: Home

Home's Supply of x

• Home is exporting x

Home

Global Market for x: Home

Home's Export Supply of x

• Home is exporting x

Home

• As relative price of x (slope)
$$\uparrow$$
 from $\left(\frac{p_x}{p_y}\right)^H \to \left(\frac{p_x}{p_y}\right)^2$, Home exports more x

Global Market for x: Home

• Home is exporting x

Home

• As relative price of x (slope) \uparrow from $\left(\frac{p_x}{p_y}\right)^H \to \left(\frac{p_x}{p_y}\right)^2$, Home exports more x

• Trace Home's **export supply curve for x** upward as relative price of x increases

Home's Export Supply of x

Global Market for x: Foreign

Foreign's Import Demand for x

• Foreign is importing x

Global Market for x: Foreign

Foreign's Import Demand for x

• Foreign is exporting x

• As relative price of x (slope) \downarrow from $\left(\frac{p_x}{p_y}\right)^F \rightarrow \left(\frac{p_x}{p_y}\right)^2$, Foreign imports more x

Global Market for x: Foreign

Foreign's Import Demand for x

• Foreign is exporting x

• As relative price of x (slope)
$$\downarrow$$
 from $\left(\frac{p_x}{p_y}\right)^F \to \left(\frac{p_x}{p_y}\right)^2$, Foreign imports more x

• Trace Foreign's import demand curve for x upward as relative price of x decreases

The Global Market for **x**

- Put together Home's export supply and Foreign's import demand for x
- World equilibrium relative price of x: $\left(\frac{p_x}{p_y}\right)^2$ balances Home's exports and

Foreign's imports of x

The Global Market for **x**

- Both countries began in autarky (A, A') with very different relative prices of x
 - Cheaper in Home (has comparative advantage)
 - More expensive in Foreign (comparative disadvantage)

The Global Market for **x**

- Both countries began in autarky (A, A') with very different relative prices of x
 - Cheaper in Home (has comparative advantage)
 - More expensive in Foreign (comparative disadvantage)
- As countries trade, changes relative price of x in each country until both reach equilibrium world relative price (B,B'), where both countries have same relative price:

$$\left(rac{p_x}{p_y}
ight)^H < \left(rac{p_x}{p_y}
ight)^2 < \left(rac{p_x}{p_y}
ight)^F$$

The Complete Picture

Autarky Equilibrium

- Countries begin in **autarky** optimum with different relative prices
 - $\circ~$ A is optimum for Home
 - A' is optimum for Foreign

Specialization

- International trade changes the relative price of x (\uparrow for Home, \downarrow for Foreign)
- With international trade, countries face same world relative prices (slope of dark purple dashed line)

Specialization

- Countries **specialize**: produce *more* of comparative advantaged good, *less* of disadvantaged good
 - $\circ~$ Home: A \rightarrow B: produces more x, less y
 - Foreign: $A' \rightarrow B'$: produces less x, more y
- Note this is **incomplete specialization**: countries still produce both goods!

Trade Triangles

Home

Foreign

• Home $\rightarrow x \rightarrow Foreign$

Trade Triangles

Home

Foreign

• Home $\rightarrow x \rightarrow Foreign$

• Home \leftarrow y \leftarrow Foreign

Gains from Trade

- Both countries exchange their imports & exports and consume at C and C'
- Both reach a higher indifference curve with trade, well beyond their PPFs!